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Anxiety is a polygenic condition, and the recently discovered

Endocannabinoid System (ECS) is one plausible candidate.

Experimental data suggest that the ECS can modulate several

neurotransmitter systems, including the serotonergic system,

which itself plays a significant role in anxiety. However, to date

there is no evidence of gene–gene interactions; indeed genetic

studies focusing separately on the two systems provide conflict-

ing data. Thus, the aim of our study was to analyze the interaction

of the promoter regions of the serotonin transporter (SLC6A4)

and cannabinoid receptor 1 (CNR1) genes on anxiety. We

genotyped 706 individuals for the 5-HTTLPR in the SLC6A4

promoter and 4 SNPs located in the CNR1 promoter

region. Anxiety was measured by the State-Trait Anxiety

Inventory (STAI-S, STAI-T), the anxiety subscale of TEMPS-A

(TEMPS-Anx), and the Brief Symptom Inventory (BSI-Anx).

Significant 5-HTTLPR x CNR1 promoter-promoter interaction

was observed using STAI-T (P¼ 0.0006) and TEMPS-Anx

(P¼ 0.0013). The risk of high anxiety scores on BSI-Anx was

4.6-fold greater in homozygous ’GG’ rs2180619 in combination

with homozygous ‘SS’ 5-HTTLPR (P¼ 0.0005) compared to

other genotypes. The effect of previously described ‘‘TGC’’

haplotype in the alternative promoter of CNR1 depended both

on the conventional promoter polymorphism and the 5-

HTTLPR. Our haplotype and putative transcription binding

profile analyses strongly suggest that certain constellations of

CB1-receptor and 5-HTT promoters yield extremely high or low

synaptic 5-HT concentrations, and these are associated with an

anxious phenotype. In conclusion, genetically determined sero-

tonergic and endocannabinoid dysfunctions could lead to a

vulnerability causing anxiety disorders and possibly depression.
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INTRODUCTION

Although anxiety is one of the most common psychiatric disorder

with significant heritable components, its exact pathomechanism

and genetic background are still not known. There is a large body of

data about the anxiolytic effect of low dose exogenous Cannabis

sativa derivate [Navarro et al., 1997; Haller et al., 2002; Rodgers

et al., 2003], and the evidence that cannabinoid use was frequently
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motivated by its positive effect on anxiety [Sethi et al., 1986; Stewart

et al., 1997; Ogborne et al., 2000].

The recently discovered Endocannabinoid System (ECS) has

been implicated in the pathomechanism of anxiety based on

pharmacological and genetic studies [Martin et al., 2002; Kathuria

et al., 2003; Haller et al., 2004; Bortolato et al., 2006; Moreira et al.,

2007].

The cannabinoid receptor-1 (CB1) is abundantly expressed in

the regions of the central nervous system involved in anxiety; and

due to its constitutive activity and the presence of common ligands,

such as 2-arachydonyl-glycerol, the activity of the receptor mod-

ulates neuronal function in many physiological regulations includ-

ing also behavior [Freund et al., 2003; Pertwee, 2005; Turu et al.,

2007]. The gene of the CB1 receptor (CNR1) located on chromo-

some 6 (6q14-15) is composed of 4 exons and besides the conven-

tional 50 promoter region an alternative one was described in the

intron 2 [Zhang et al., 2004], but evidence for their role in anxiety is

still poorly available [Lu et al., 2008].

Although selective serotonin reuptake inhibitors (SSRIs) are

effective in the treatment of anxiety disorders, several details of

the role of the serotonin transporter (5-HTT) in the pathomechan-

ism of anxiety are still unclear. Despite the anxiolytic effect of SSRIs

after chronic treatment, acute effects, especially in rodents, are

anxiogenic [Bagdy, 1998; To and Bagdy 1999; Bagdy et al., 2001]

and increased anxiety has been consistently described in 5-HTT

knock out mice [Wellman et al., 2007]. The ‘‘S’’ allele of 5-HTTLPR,

a well-known functional polymorphism of the serotonin transport-

er gene (SLC6A4) promoter is associated with reduced transcrip-

tional efficiency of the gene, resulting in decreased 5-HTT

expression [Lesch et al., 1996]. Association studies between 5-

HTTLPR and anxiety yielded conflicting data [Lesch et al., 1996;

Jorm et al., 1998; Mazzanti et al., 1998; Flory et al., 1999; Murakami

et al., 1999; Seretti et al., 1999; Greenberg et al., 2000; Osher et al.,

2000; Gonda et al., 2007; Wachleski et al., 2008] confirming the

general view that anxiety is a multigenetic condition.

Neurotransmitter-induced Ca2þ signal generation leads to

endocannabinoid release [Freund et al., 2003; Turu et al., 2009],

and activation of the ECS negatively modulates the release of

different neurotransmitters in multiple brain areas involved in

cognition, memory, and mood regulation (e.g., hippocampus and

the prefrontal cortex). Nakazi et al. reported that CB1 activation

inhibits 5-HT release, and another in vivo study showed that CB1

antagonists increase 5-HT metabolites in the prefrontal cortex

[Nakazi et al., 2000; Tzavara et al., 2003]. Several animal studies

confirmed this biological interaction between the serotonergic

system and ECS [Hermann et al., 2002; Darmani et al., 2003; Gobbi

et al., 2005; Haring et al., 2007; Mato et al., 2007], but human

evidence is lacking.

Altogether both systems are potential contributors to anxiety,

however, studies focusing on them separately provided conflicting

data. Since results from animal studies suggest that the two systems

interact with each other, we hypothesized that their interaction at

the genetic level could influence human anxiety. The aim of our

study was to determine the association between the anxious phe-

notype and the functional polymorphisms of the promoter regions

of SLC6A4 and CNR1 genes in a large Hungarian general

population.

METHODS AND MATERIALS

Sample
Seven-hundred and six unrelated volunteers, 572 women and 134

men were included in the study. Participants were recruited from

the practices of general practitioners, adult students participating in

a long-distance learning program and community-based popula-

tion. The inclusion of subjects was independent of any positive

psychiatric anamnesis. The mean age of participants was 30.26�
10.62 years. We excluded those who were medicated with psychi-

atric drugs from the study based on background questionnaire. All

subjects were Hungarian and of Caucasian origin and they gave

written informed consent before entering the study. The study was

approved by the Central Ethics Committee. The descriptive data of

the study population are shown in Supplementary Table 1.

Phenotype Measures
As anxiety is a complex condition we measured it by four dimen-

sions, state and trait anxiety with State-Trait Anxiety Inventory

(STAI-S and STAI-T, respectively), anxious temperament (anxious

subscale of the Temperament Evaluation of the Memphis, Pisa,

Paris and San Diego-Autoquestionnaire, TEMPS-Anx), and cur-

rent clinical status of anxiety (anxious subscale of the Brief Symp-

tom Inventory, BSI-ANX).

The State-Trait Anxiety Inventory (STAI) is a 40-item, well-

established self-report questionnaire developed by Spielberger

[Spielberger, 1970]. It assesses ‘‘trait’’ and ‘‘state’’ anxiety as sepa-

rate, dimensional scales. Both scales range from 0 to 4 with

increasing intensity. State anxiety is defined as a transitory emo-

tional condition characterized by tension, apprehension, and hy-

peractivation of the autonomic nervous system. Trait anxiety is

characterized by a stable anxious tendency due to the tendency of

the subject to perceive daily situations as threatening leading to an

increase in the grade of anxiety.

The Brief Symptom Inventory (BSI) is a 26-item self-report

symptom inventory developed from its longer parent instrument,

the SCL-90-R designed to reflect the psychological symptom

patterns of psychiatric and medical patients and non-patients. The

26-item brief version inventory reports profiles of obsessive-com-

pulsive, interpersonal sensitivity, depression, anxiety, and addi-

tional items [Derogatis and Melisaratos, 1983]. Each item is scored

on a 5-point scale ranging from 0 (not at all) to 4 (extremely). A case-

control-like experiment was designed dividing the study popula-

tion in two groups. Cut-off point was the medianþ 2SD of the

anxious subscale score. Subjects with BSI-ANX score more than 1.8

were grouped in the high anxiety subgroup. The TEMPS-A ques-

tionnaire (Temperament Evaluation of the Memphis, Pisa, Paris

and San Diego-Autoquestionnaire) measures affective tempera-

ments. This is a 110 item (109 for males) self-report psychological

instrument with subscales representing five affective temperament

dimensions: depressive, cyclothymic, hyperthymic, irritable, and

anxious [Akiskal et al., 2005]. In these studies we used only the

anxious subscale (TEMPS-ANX).

The background questionnaire was adapted from the version

developed by the Epidemiolgy Unit of the Universiy of Manchester.

This well-structured self-rating questionnaire consists of 22 items
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and collects detailed information about medical history including

psychiatric history and medications, family psychiatric history and

socio-economic background.

Genotyping
Buccal mucosa samples were collected from each subjects and

genomic DNA was extracted using conventional phenol-chloro-

form extraction protocol. DNA quality and quantity was deter-

mined with NanoDrop B-100 spectrophotometer, and all samples

were diluted to a DNA concentration of 20 ng/ml. For genotyping 5-

HTTLPR, the genomic region containing the polymorphism was

amplified using 6-FAM labeled forward primer (Table I) as it was

previously described [Lazary et al., 2008]. Four SNPs in CNR1

(rs2180619, rs806379, rs1535255, and rs2023239) were selected for

genotyping based on the literature [Zhang et al., 2004]. rs2180619 is

located in the conventional 50 promoter of the gene and it tags more

than a 2 kbp long region. The other three SNPs (rs806379,

rs1535255, and rs2023239) are located in the intron 2 which is

described as an alternative promoter region of the gene [Zhang

et al., 2004]. SNPs were genotyped at Center for Integrated Geno-

mic Medical Research at The University of Manchester using the

Sequenom� MassARRAY technology (Sequenom Inc., San Diego,

CA, USA). The iPLEX� assay, based on post-PCR single base

primer extension, was performed according to manufacturer’s

instructions.

Statistical Analysis
Descriptive statistics like Hardy–Weinberg equilibrium, minimal

allele frequency (MAF) and pair-wise linkage disequilibrium (LD)

between genotyped polymorphisms were computed using Haplo-

view 4.0 software [Barrett et al., 2005]. Single marker association

studies were performed under the three common genetic models

(additive, dominant, and recessive) using generalized linear models

(GLM) in the ‘‘SNPassoc’’ R-package [Gonzalez et al., 2007]. All

analyses were adjusted to age and gender and a-level was corrected

with the number of the studied polymorphisms, thus P-values less

than 0.01 were considered nominally significant.

Gene–gene interaction based on the polymorphisms (G�G)

were tested with two different statistical methods. The ‘‘SNPassoc’’

software determines interaction effects performing log-likelihood

ratio tests (LRT). The graphical output of this command visualizes

the P-values of the interactions between each pair of polymor-

phisms and the examined trait. To avoid false positive results, only

highly suggestive interactions characterized by a P-value less than

0.01 were selected and G x G interactions were validated under

GLMs. Interactions with a P< 0.01 in the regression model were

considered significant.

Haplotype analysis of the CNR1 gene was performed in a

subsample consisting of 669 subjects without any missing CNR1

genotype to avoid false results in haplotype estimation. We tested

the effect of the haplotype constructed by the three SNPs located in

the alternate promoter as well as the haplotype built by the four

CNR1 SNPs using the THESIAS software [Tregouet and Garelle,

2007]. The program is based on the maximum likelihood model

(LRT) and linked to the SEM algorithm. Interaction between the

SLC6A4 promoter polymorphism and CNR1 promoter haplotypes

was also investigated by entering the 5-HTTLPR as a binomial

(0¼ ‘‘SL or LL’’ and 1¼ ‘‘SS’’) covariate into the model. Individual

effect of certain haplotypes was estimated (EPM i.e., estimated

phenotypic mean was determined) and compared using LRT

analysis. Rare haplotypes less frequent than 1% were excluded from

the analyses.

Sequence Analysis
Genomic sequences of the regions next to the genotyped poly-

morphisms were obtained from the NCBI dbSNP database. Two

sequences containing the two allelic variants of each SNP were used

TABLE I. Descriptive Statistics of Genotyped Plymorphisms in the SLC6A4 and CNR1 Genes

Marker Alleles Site Genotype frequencies MAF HWE Success Primer setsa

5-HTTLPR S/L Promoter of SLC6A4 LL: 35.7%; SL: 48.6%;
SS: 15.7%

40.0% 0.814 100% f: 5-GCCAGCACCTAACCCCTAAT-3;
e: 5-GTAGGGTGCAAGGAGAATGC-3

rs2180619 A/G Conventional promoter
of CNR1

AA: 33.6%; AG: 49.6%;
GG: 16.2%

41.2% 0.437 99.4% f: 5-ACAGGCATTTTTAGCCCACC-3;
r: 5-AAGCAACAGATGTTGAAGCC-3;
e: 5-GGCAGCGCAAGATTCAAA-3

rs806379 A/T Intron 2 of CNR1
(alternative promoter)

AA: 20.1%; AT: 48.6%;
TT: 20.8%

45.4% 0.704 99.4% f: 5-CCTAAATCGCAGAACTGATC-3;
r: 5-GACTTACTTTTGTGTCAGGC-3;
e: 5-CAGAACTGATCTGAAATTAGATGA-3

rs1535255 T/G Intron 2 of CNR1
(alternative promoter)

TT: 71.1%; GT: 27.1%;
GG: 1.8%

15.4% 0.384 100% f: 5-GATCAGTTCTGCGATTTAGG-3;
r: 5-GATGGTACTTGGGCAATCAG-3;
e: 5-CATCATCCTCATCCCC-3

rs2023239 T/C Intron 2 of CNR1
(alternative promoter)

TT: 71.6%; TC: 26.6%;
CC: 1.8%

15.1% 0.369 96.9% f: 5-GGGACACAGAAGACAGTCAC-3;
r: 5-GGGAGTTGAAAGGCAAAAGC-3;
e: 5-TTTATATATGAGAGAGCTGTTCCTTAC-3

P-value of c2 tests for Hardy–Weinberg equilibrium (HWE), minimal allele frequency (MAF) and genotyping success rate (success) are represented.
aPrimer sets mean forward (f), reverse (r) and extension primers (e) used for genotyping
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to search for putative transcription factor binding sites in the

TRANSFAC database, using the PROMO web-based software

[Messeguer et al., 2002].

RESULTS

Descriptive Statistics
All genotyped polymorphisms were in Hardy–Weinberg equilibri-

um and MAF was more than 5% in each case (Table I). A haploblock

constructed by the three SNPs (rs806379, rs1535255, rs2023239) in

intron 2 of CNR1 was determined based on confidence intervals

[Gabriel et al., 2002]. There were 59 (8.4%) individuals with high

anxiety based on BSI-ANX score that matched point-prevalence of

anxiety in the Hungarian population [Szadoczky et al., 1997].

Frequency of high anxiety did not differ significantly between men

and women (P¼ 0.174). Means of STAI-S and STAI-T were not

different significantly between men and women (STAI-Smen ¼
38.08 � 11.886 vs. STAI-Swomen ¼ 38.03 � 11.291; P ¼ 0.967,

STAI-Tmen ¼ 39.22� 10.678 vs. STAI-Twomen ¼ 40.45� 10.130;

P¼ 0.212). Women scored significantly higher compared to men

on TEMPS-Anx (TEMPS-Anxmen ¼ 0.2405� 0.206 vs. TEMPS-

Anxwomen ¼ 0.2945� 0.199; P¼ 0.005).

Pearson correlation tests between the independent scales showed

that BSI-ANX correlated at fewest level with other scales (rSTAI-S ¼
0.500 rSTAI-T ¼ 0.597, rTEPMS-Anx ¼ 0.617). TEMPS-Anx correlated

stronger with STAI-T than STAI-S (rSTAI-S¼ 0.496, rSTAI-T¼ 0.675).

All correlations were significant (P< 0.001).

Single Marker Associations
To assess single marker associations we analyzed the individual

effects of each polymorphism on anxious phenotype. 5-HTTLPR

individually did not show any significant associations with STAI-S,

STAI-T, TEMPS-Anx, and BSI-ANX in GLM. Significant associ-

ations between SNPs (rs2180619, rs806379, rs1535255, and

rs2023239) of the CNR1 gene and anxiety scores were also not

observed (data not shown).

Interaction Analyses
Regarding evidence from animal studies about the potential cross-

talk between the ECS and the serotonergic system, we tested the

genetic interactions. G�G interaction analyses showed significant

interactions between rs2180619 of CNR1 and 5-HTTLPR of SLC6A4

on STAI-T, TEMPS-Anx and BSI-Anx as measured by likelihood

ratio tests (Fig. 1) and validated in regression analyses (Fig. 2). We

found that homozygous ‘‘GG’’ genotype of rs2180619 in interaction

with ‘‘SS’’ genotype of 5-HTTLPR was significantly associated with

the highest score of STAI-T (Mean� SEM was 46.35� 3.262,

P¼ 0.0006) and TEMPS-Anx (Mean� SEM was 0.394� 0.05,

P¼ 0.0013) (Fig. 2/A). The interaction was not significant on

STAI-S (P¼ 0.065). The chance to have high anxiety was more

than four-fold (OR¼ 4.64, 95% CI: 1.7-12.71) in the group of

‘‘GG’’ genotype of rs2180619 in interaction with ‘‘SS’’ genotype of

5-HTTLPR compared to ‘‘A’’ allele carriers of rs2180619 and ‘‘L’’

allele carriers of 5-HTTLPR (OR¼ 1). Subjects with ‘‘GG’’ geno-

type of rs2180619 and ‘‘L’’ allele carriers of 5-HTTLPR seemed to be

protected from the high anxiety (OR¼ 0.36, 95% CI: 0.11–1.18)

(Fig. 2/B).

Effects of interactions between 5-HTTLPR and rs2180619 on

anxiety phenotypes were weakened, but remained significant after

adjustment for history of depression (TEMPS-Anx, P¼ 0.007; BSI-

Anx, P¼ 0.0001 and STAI-T, P¼ 0.011), suggesting the signifi-

cance of these genes in anxiety, although the possible role of

depression in these associations cannot be ruled out.

We analyzed associations of the haplotypes of the three SNPs

(rs806379, rs1535255, and rs2023239) located in the intron 2 of

CNR1 with anxiety. This haploblock had no significant effect on any

anxious scales, neither in interaction with 5-HTTLPR. However,

significant interaction between the 5-HTTLPR and the four-locus

CNR1 haplotypes was found (Fig. 3 and Supplementary Table 2).

‘‘GTGC’’ haplotype was associated with the highest EPM of STAI-T

and TEMPS-Anx in ‘‘SS’’ carriers and it was related to lower scores

in ‘‘L’’ carriers. The difference was significant in case of the STAI-T

(‘‘GTGC’’ related EPMSTAI-T were 26.23 and 19.47 in ‘‘SS’’ and

‘‘SL’’þ ‘‘LL’’ groups respectively, PG�G ¼ 0.005) and showed a

trend in case of the TEMPS-Anx (PG�G¼ 0.085). In ‘‘SS’’ carriers,

the effect of ‘‘GTGC’’ haplotype was different from the effect of

‘‘ATGC’’ regarding STAI-T, but the difference did not remain

significant after the multiple correction (P¼ 0.041). In the case

of ‘‘AATT’’ CNR1 haplotype the EPM was significantly higher

in ‘‘SL’’þ ‘‘LL’’ carriers compared to ‘‘SS’’ carriers for STAI-T

(‘‘AATT’’ related EPMSTAI-T was 18.35 and 21.73 in ‘‘SS’’ and

‘‘SL’’þ ‘‘LL’’ groups respectively, PG�G ¼ 0.009) as well as for

TEMPS-Anx (‘‘AATT’’ related EPMTEMP-Anx was 0.010 and 0.176

in ‘‘SS’’ and ‘‘SL’’þ ‘‘LL’’ groups respectively, PG�G¼ 0.009).

Sequence Analysis
To find the potential biological link between the haplotypes and

phenotypes, we made ‘‘in silico’’ data analyses for putative tran-

scription factor binding sites in the conventional and the alternative

promoter regions of the CNR1 (Supplementary Table 3). Only allele

specific binding sites are represented and discussed. We found two

allele-specific binding sites in case of the ‘‘A’’ allele of rs2180619.

TFIID (transcription factor II D, binding site: TTCAAAA—
rs2180619 underlined) and GR (glucocorticoid receptor,

CAAAAGG) can bind to this sequence with a similarity more than

90%. In case of the ‘‘G’’ allele four different TFs have putative

binding site at the sequence; SRY (sex-determining region Y gene

product, GATTCAAAG), TCF-4E (T-cell factor 4E, TTCAAAG),

LEF-1 (lymphoid enhancer-binding factor 1, ATTCAAAG), and TCF

-4 (transcription factor 4, GATTCAAAGG). The putative TF bind-

ing profile of the alternative promoter site is also different depend-

ing on the three SNPs. In case of the ‘‘A’’ allele of rs806379 an

additional binding site of GR-b (glucocorticoid receptor beta,

AATTA) can be found, while TFIID and GATA-1 (GATA binding

protein 1, ATGATA) can bind the sequence in case of the ‘‘T’’ allele

of the polymorphism. In case of ‘‘T’’ alleles of rs1535255 and

rs2023239 two allele specific binding sites of YY1 (YY1 transcription

factor, ATGG) can be seen which disappear in case of the other

alleles of the two SNPs.
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DISCUSSION

Anxiety is a multifactorial condition influenced by multiple genes.

We report the first evidence for significant interaction between the

SLC6A4 and the CNR1 genes on anxious phenotype. 5-HTTLPR is a

well-known functional length-polymorphism located in the pro-

moter of SLC6A4. The ‘‘S’’ allele, resulting reduced 5-HTT expres-

sion [Lesch et al., 1996], was previously associated with certain

psychiatric disorders [Sen et al., 2004; Gonda et al., 2005; Gonda

et al., 2006; Serretti et al., 2006; D’Souza and Craig, 2008; Lazary

et al., 2008; Murphy et al., 2008] however, data regarding anxiety are

contradictory [Lesch et al., 1996; Ball et al., 1997; Ebstein et al., 1997;

Gelernter et al., 1998; Jorm et al., 1998; Ricketts et al., 1998; Deary

et al., 1999; Seretti et al., 1999; Sen et al., 2004; Gonda et al., 2007].

To the best of our knowledge, we were the first to publish the genetic

interaction between 5-HTTLPR and CNR1 on anxiety. Our results

showed that 5-HTTLPR was significantly associated with anxious

phenotype only in interaction with CNR1. Genotype analyses showed

that homozygous ‘‘SS’’ genotype of 5-HTTLPR in interaction with

homozygous ‘‘GG’’ genotype of rs2180619 was associated with the

highest anxiety scores. This gene–gene interaction became more

sophisticated testing the effect of the haplotypes of CNR1 promoter

in interaction with 5-HTTLPR. The highest anxiety score was found

in the ‘‘SS’’ subgroup with ‘‘GTGC’’ haplotype. ‘‘TGC’’ sequence of

the latter haplotype is an earlier described sequence by Zhang et al.

who reported the specific structure of the regulatory elements of

CNR1 [Zhang et al., 2004]. Two genomic regions were associated

with significant promoter activities, the 50 flanking region of exon 1

FIG. 1. Gene–gene interaction analyses between CNR1 and SLC6A4 promoter polymorphism on anxious phenotype. Visualized results of likelihood

ratio tests for interactions between genetic markers (5-HTTLPR, rs2180619, rs806379, rs1535255, and rs2023239) and TEMPS-Anx, STAI-T and

BSI-Anx are generated by ‘‘SNPassoc’’ R-package. Highly suggestive interactions were shown between the 5-HTTLPR of SLC6A4 promoter and

rs2180619 of CNR1 promoter on anxiety (P< 0.01).
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(conventional promoter site) and the 50 flanking region of exon 3

(intron 2, alternative promoter site). They found that allelic var-

iations of the two promoter regions could be associated with

polysubstance abuse and a haplotype of the alternative promoter

was associated to lower mRNA expression of CNR1. This haplotype

(‘‘TAG’’ in their study) is matched ‘‘TGC’’ sequence in our study

according the results of Herman et al. [Hermann et al., 2002]*. Our

detailed haplotype analyses suggested that the effect of this ‘‘TGC’’

sequence on anxiety was affected not only by the 5-HTTLPR carrier

status but also by the rs2180619 allele located in the conventional

promoter, but this latter was not significant after correction, and

thus, further studies are required to confirm this marginally signif-

icant result.

We hypothesized that phenotypic effects might be associated

with altered activity of the CNR1 promoter depending on the

haplotype structure. Certain CNR1 haplotypes have different tran-

scriptor factor (TF) binding profiles as it was demonstrated by ‘‘in

silico’’ sequence analyses (see Results and Supplementary Table 3).

We found that in case of the ‘‘A’’ allele of rs2180619 two TFs (TFIID,

GR) can bind to this sequence with a similarity more than 90%. In

case of the ‘‘G’’ allele previously associated to polysubstance abuse

[Zhang et al., 2004], four different TFs have putative binding site

(SRY, TCF-4E, LEF-1, and TCF-4) at the sequence. A negative

modulatory role of rs2180619 can be presumed in the transcription

of the gene regarding the ‘‘in silico’’ data and that this site was

described by Zhang et al. as a likely negative regulatory region

[Zhang et al., 2004]. The putative TF binding profile of the

alternative promoter site is also different depending on the three-

SNP haplotype. Carriers of ‘‘TGC’’, previously associated haplotype

with lower CNR1 expression, lose two physical binding sites of YY1

compared to other haplotypes.

Animal studies revealed that presynaptically located CB1 recep-

tors can be found on serotonergic neurons colocalized with the 5-

HTT [Haring et al., 2007]. 5-HT release is modulated through CB1

FIG. 2. Significant interaction between 5-HTTLPR and rs2180619 on anxious phenotypes. Mean and SEM. of STAI-T and TEMPS-Anx and P-values of

gene–gene interaction (PG� G) in the regression analyses are presented on (A). The power of the study was 90.8% in case of G � G interaction

regarding STAI-T and 87.8% in the case of TEMPS-Anx. Odds ratios for clinical anxiety and P-value of gene–gene interaction (PG� G) in different

genomic combinations of 5-HTTLPR and rs2180619 are demonstrated on (B). Power of the study was 83.4%. Numbers in the bars on the first graph

are the same in the two subsequent graphs.

�We report the SNP alleles according to the NCBI refSNP marker

database corresponding to the plus strand of chromosome 6 in each case.

Zhang et al. did not describe the convention they used in representing

SNP data but it seems that the genotyping assays they used for rs1535255

and rs2023239 were designed for the minus strand of the sequence. Here,

according to Herman et al., we report the plus strand minor allele base

for the SNPs rs806379, rs1535255 and rs2023239 as T, G and C versus

that in Zhang et al. of T, A and G.
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FIG. 3. Effect of CNR1� promoter haplotypes in interaction with 5-HTTLPR on anxious phenotype. Anxiety phenotypes are represented by estimated

phenotype mean (EPM) and 95% confidential intervals of STAI-T (A) and TEMPS-Anx (B). *Significant gene–gene interactions were shown on anxiety

scales (P < 0.01). The highest anxiety score of both scales is associated to the ‘‘GTGC’’ haplotype in ‘‘SS’’ carriers.

FIG. 4. A model for SLC6A4 promoter� CNR1 promoter interaction, synaptic 5-HT concentration and anxiety. Transcription factor binding profile

analyses suggest that CNR1 ‘‘GTGC’’ haplotype is associated with low expression of inhibitory CB1 (A) while ‘‘AATT’’ results high expression of CB1

(B). ‘‘SS’’ genotype of the 5-HTTLPR is related to reduced serotonin transporter (5-HTT) efficiency compared to ‘‘L’’ carriers. The four genetic

constellations, where significant interactions were determined in our model, yield different synaptic 5-HT concentrations. The highest 5-HT

concentration is associated with increased release and decreased reuptake (‘‘SS’’ with ‘‘GTGC’’) yielding the highest anxiety scores in our model.

The lowest 5-HT concentration caused by increased reuptake and decreased release mechanism (‘‘SL’’ þ ‘‘LL’’ and ‘‘AATT’’) was also associated with

relatively high anxiety. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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in mouse brain cortex [Nakazi et al., 2000] especially in prefrontal

cortex [Tzavara et al., 2003]. Darmani et al. found that behaviorally

active doses of CB1 receptor antagonist (SR141716A) increase brain

5-HT turnover [Darmani et al., 2003]. In light of these data possible

explanation can be given for our results about the genetic interac-

tion of the two systems on anxiety (Fig. 4). As described above, in

‘‘SS’’ genotype of 5-HTTLPR reduced 5-HTT efficiency results

increased synaptic 5-HT concentration due to decreased reuptake

mechanism compared to ‘‘L’’ carriers. The lower expression of

inhibitory CB1 (‘‘TGC’’ haplotype of the alternative promoter and

‘‘G’’ allele of rs2180619) causes decreased inhibition of 5-HT

release. Thus, this genetic constellation (‘‘GTGC’’ haplotype with

‘‘SS’’ genotype) could result in extremely high synaptic 5-HT

concentration in our model. Lack of inhibition of 5-HT release

by CB1 receptor can be compensated by higher expression of the 5-

HTT and thus increased reuptake in ‘‘L’’ carriers. Parsey et al.

concluded that high level of extracellular 5-HT influence the

regulation of the development of the serotonergic system in an

earlier phase of life creating the conditions of a genetic vulnerability

for anxiety disorders [Parsey et al., 2006]. Another support of our

model is that extremely high serotonin level in the synaptic cleft

associated with impaired stress-coping capacity and higher vulner-

ability for anxiety were found in adult 5-HTT knock out mice [Kim

et al., 2005; Carroll et al., 2007; Wellman et al., 2007]. Our results

suggest that extreme synaptic 5-HT level can also depend on the

genetic interaction between SLC6A4 and CNR1 influencing the

cellular expression of 5-HTT and CB1. In this model the highest

serotonin level (‘‘SS’’ genotype with ‘‘GTGC’’ haplotype) is associ-

ated with the highest anxiety score.

On the other hand, relatively high anxiety was found also in a

subgroup of ‘‘L’’ carrier subjects. The ‘‘AATT’’ haplotype of CNR1

is supposedly related to a higher cellular expression of CB1 regard-

ing the complete difference in the TF binding profile between the

‘‘AATT’’ and ‘‘GTGC’’ haplotypes. The higher expression of CB1

yields reduced 5-HT release resulting in low synaptic 5-HT level in

interaction with the higher expression of 5-HTT caused by the 5-

HTTLPR ‘‘L’’ allele (Fig. 4). The CB1-mediated inhibition of 5-HT

release together with the increased reuptake may cause extremely

low synaptic serotonin concentration that can also be associated

with higher anxiety than average. Decreased 5-HT concentration

yielding anxious phenotype was demonstrated by tryptophan

depletion studies [Goddard et al., 1995; Klaassen et al., 1998].

Moreover, loss-of-function mutation in tryptophan hydroxylase-2

was identified in unipolar major depression [Zhang et al., 2005].

Data on this topic suggest that serotonergic dysfunction has a

crucial role in the development of anxiety and the sensitive balance

of the normal regulation can be disturbed by hyper- and hypo-

function of the serotonergic system as well.

We investigated the effect of promoter polymorphisms in

SLC6A4 and CNR1 on four anxiety scales in a large general

population. Genetic effects were significant on trait and tempera-

ment anxiety but not on state anxiety in our studies. These data

suggest that vulnerability for anxiety can be predisposed by geneti-

cally determined serotonergic and endocannabinoid dysfunction.

Our results support a biologically significant and functionally

relevant new model for gene–gene interaction between the seroto-

nergic system and the ECS on anxiety.
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